If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+9=21x
We move all terms to the left:
3x^2+9-(21x)=0
a = 3; b = -21; c = +9;
Δ = b2-4ac
Δ = -212-4·3·9
Δ = 333
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{333}=\sqrt{9*37}=\sqrt{9}*\sqrt{37}=3\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{37}}{2*3}=\frac{21-3\sqrt{37}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{37}}{2*3}=\frac{21+3\sqrt{37}}{6} $
| 3x^+9=21x | | 15x-19=90 | | 15x-19+4x+52=90 | | 9x+3=1/2(18+6x) | | (14x-20)+(3x+25)=90 | | 48=2y+12 | | 3x-2x^2=25 | | 2x+12=24 | | 6(1-6x)=-282 | | x^+2x+1=64 | | 0=u^2+32u-60 | | 5x+3x-20=180-x | | 2x+1+x4=x+16+x | | -5x-19=16 | | x+13=4x-8 | | t÷5-1=16 | | 4^x-5=78 | | 11h-4h+1-53=11 | | 4y-23+2y-2=y+5 | | a/3+2a/3-4=10 | | 5y-12=12 | | 10^2+6^2=c^2 | | x+3=215 | | y3-49y=0 | | 7(4w+9)=-4/4 | | 2(x-4)=6x+14 | | 47=v/2+17 | | (2x-14)^2=45 | | N=323n-5= | | w^2=4/25 | | (2x-14)^2=24 | | -5(2t+4)=-70 |